Expectation-Maximization (EM) Algorithm

Adopted from slides by Alexander Ihler
Probabilistic models in unsupervised learning

• **K-means algorithm**
 • Assigned each example to exactly one cluster
 • What if clusters are overlapping?
 • Hard to tell which cluster is right
 • Maybe we should try to remain uncertain
 • Used Euclidean distance
 • What if cluster has a non-circular shape?

• **EM algorithm**
 • Assign data to cluster with some probability
 • Gives probability model of \(x \)! ("generative")
Expectation-Maximization (EM) Algorithm

• Learning algorithm for latent variable models
• Observed features \(x: x^{(1)}, x^{(2)}, \ldots, x^{(m)} \)
• Latent features \(z: z^{(1)}, z^{(2)}, \ldots, z^{(m)} \)

• Assume a probabilistic model over \(x, z \)
 \[
P_\theta(x, z) = P_\theta(x|z)P(z)
\]
• Learning most likely parameters \(\theta \) and \(z \) based on the observed data
 \[
 \arg \max_{\theta, z} P_\theta(x) = \sum_z P_\theta(x|z)P(z)
 \]
Expectation-Maximization (EM) Algorithm

• Iteratively update θ and z

• Initially assume random parameters θ

• Iterate following two steps until convergence:
 • **Expectation (E-step):** Compute $P_{\theta}(z^{(i)}|x^{(i)})$ for each example i based on the current parameters θ
 • **Maximization (M-step):** Re-estimate the most likely parameters θ based on the current data x, z
Coin tossing example

- Two coins A and B with unknown biases θ_A and θ_B
- Repeat following procedure 5 times:
 - Randomly choose one of the two coins
 - Perform 10 independent coin tosses with selected coin

\[\hat{\theta}_A = \frac{\text{# of heads using coin } A}{\text{total # of flips using coin } A} \]
\[\hat{\theta}_B = \frac{\text{# of heads using coin } B}{\text{total # of flips using coin } B} \]

<table>
<thead>
<tr>
<th>Coin A</th>
<th>Coin B</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 H, 5 T</td>
<td></td>
</tr>
<tr>
<td>9 H, 1 T</td>
<td>5 H, 5 T</td>
</tr>
<tr>
<td>8 H, 2 T</td>
<td>9 H, 11 T</td>
</tr>
<tr>
<td>4 H, 6 T</td>
<td></td>
</tr>
<tr>
<td>24 H, 6 T</td>
<td></td>
</tr>
</tbody>
</table>

5 sets, 10 tosses per set
EM Algorithm

• Observed feature $x \in \{0, 1, \cdots, 10\}$: # of heads
 • Observed data:
 $x^{(1)} = 5, x^{(2)} = 9, x^{(3)} = 8, x^{(4)} = 4, x^{(5)} = 7$

• Latent feature $z \in \{A, B\}$: identity of the coin
 • $z^{(1)}, z^{(2)}, z^{(3)}, z^{(4)}, z^{(5)}$
 • Assume $P(z) = 0.5$

• Model
 • Parameters θ_A, θ_B

 $P_\theta(x|z) = \begin{cases}
 C_{10}^x \cdot (\theta_A)^x \cdot (1 - \theta_A)^{10-x} & \text{if } z = 'A' \\
 C_{10}^x \cdot (\theta_B)^x \cdot (1 - \theta_B)^{10-x} & \text{if } z = 'B'
 \end{cases}$
EM Algorithm

$$P_\theta(z^{(i)}|x^{(i)}) = \frac{P(z^{(i)})P_\theta(x^{(i)}|z^{(i)})}{\sum_z P(z) P_\theta(x^{(i)}|z)}$$
EM Algorithm

\[\hat{\theta}_A = \frac{\text{# of heads using coin } A}{\text{total # of flips using coin } A} \]

\[\hat{\theta}_B = \frac{\text{# of heads using coin } B}{\text{total # of flips using coin } B} \]

<table>
<thead>
<tr>
<th>Coin A</th>
<th>Coin B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\approx 2.2) H, 2.2 T</td>
<td>(\approx 2.8) H, 2.8 T</td>
</tr>
<tr>
<td>(\approx 7.2) H, 0.8 T</td>
<td>(\approx 1.8) H, 0.2 T</td>
</tr>
<tr>
<td>(\approx 5.9) H, 1.5 T</td>
<td>(\approx 2.1) H, 0.5 T</td>
</tr>
<tr>
<td>(\approx 1.4) H, 2.1 T</td>
<td>(\approx 2.6) H, 3.9 T</td>
</tr>
<tr>
<td>(\approx 4.5) H, 1.9 T</td>
<td>(\approx 2.5) H, 1.1 T</td>
</tr>
<tr>
<td>(\approx 21.3) H, 8.6 T</td>
<td>(\approx 11.7) H, 8.4 T</td>
</tr>
</tbody>
</table>

\[\hat{\theta}_A^{(0)} = 0.60 \]
\[\hat{\theta}_B^{(0)} = 0.50 \]

\[\hat{\theta}_A^{(1)} \approx \frac{21.3}{21.3 + 8.6} \approx 0.71 \]
\[\hat{\theta}_B^{(1)} \approx \frac{11.7}{11.7 + 8.4} \approx 0.58 \]

\[\hat{\theta}_A^{(10)} \approx 0.80 \]
\[\hat{\theta}_B^{(10)} \approx 0.52 \]
EM for Clustering: Mixtures of Gaussians

• Start with parameters describing each cluster
• Mean μ_c, variance σ_c, “size” π_c
• Probability distribution:

$$p(x) = \sum_c \pi_c \mathcal{N}(x ; \mu_c, \sigma_c)$$
Mixtures of Gaussians

• Start with parameters describing each cluster
• Mean μ_c, variance σ_c, “size” π_c
• Probability distribution:

$$p(x) = \sum_c \pi_c \mathcal{N}(x ; \mu_c, \sigma_c)$$

• Equivalent “latent variable” form:

$$p(z = c) = \pi_c$$

$$p(x|z = c) = \mathcal{N}(x ; \mu_c, \sigma_c)$$

Select a mixture component with probability π
Sample from that component’s Gaussian

“Latent assignment” z:
we observe x, but z is hidden

$p(x) = \text{marginal over } x$
Multivariate Gaussian models

\[\mathcal{N}(\mathbf{x} ; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{-1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \right\} \]

Maximum Likelihood estimates

\[\hat{\mu} = \frac{1}{m} \sum_i x^{(i)} \]
\[\hat{\Sigma} = \frac{1}{m} \sum_i (x^{(i)} - \hat{\mu})^T (x^{(i)} - \hat{\mu}) \]

We’ll model each cluster using one of these Gaussian “bells”…
EM Algorithm

• Observed feature \(x \in \mathbb{R}^d \)
• Latent feature \(z \in \{c_1, c_2, c_3\} \)
• Model
 • Parameters: Mean \(\mu_c \), variance \(\Sigma_c \), “size” \(\pi_c \) for each \(c \)

\[
P(x|z = c) = \mathcal{N}(x; \mu_c, \Sigma_c)
\]

\[
P(z = c) = \pi_c
\]

\[
P(x, z = c) = P(x|z = c)P(z = c) = \pi_c \cdot \mathcal{N}(x; \mu_c, \Sigma_c)
\]
EM Algorithm: E-step

- Start with clusters: Mean μ_c, Covariance Σ_c, “size” π_c
- E-step (“Expectation”)
 - For each datum (example) x_i,
 - Compute “r_{ic}”, the probability that it belongs to cluster c
 - Compute its probability under model c
 - Normalize to sum to one (over clusters c)

\[
P(z^{(i)} \mid x^{(i)}) = r_{ic} = \frac{\pi_c N(x_i \mid \mu_c, \Sigma_c)}{\sum_{c'} \pi_{c'} N(x_i \mid \mu_{c'}, \Sigma_{c'})}
\]
EM Algorithm: E-step

- Start with clusters: Mean μ_c, Covariance Σ_c, “size” π_c
- E-step (“Expectation”)
 - For each datum (example) x_i,
 - Compute “r_{ic}”, the probability that it belongs to cluster c
 - Compute its probability under model c
 - Normalize to sum to one (over clusters c)

 $$P(z^{(i)}|x^{(i)}) = r_{ic} = \frac{\pi_c N(x_i; \mu_c, \Sigma_c)}{\sum_{c'} \pi_{c'} N(x_i; \mu_{c'}, \Sigma_{c'})}$$

- If x_i is very likely under the c^{th} Gaussian, it gets high weight
- Denominator just makes r’s sum to one

$$r_1 \approx .33; \quad r_2 \approx .66$$
EM Algorithm: M-step

- Start with assignment probabilities r_{ic}
- Update parameters: Mean μ_c, Covariance Σ_c, “size” π_c
- M-step (“Maximization”)
 - For each cluster (Gaussian) $z = c$,
 - Update its parameters using the (weighted) data points

$$m_c = \sum_i r_{ic} \quad \text{Total responsibility allocated to cluster c}$$

$$\pi_c = \frac{m_c}{m} \quad \text{Fraction of total assigned to cluster c}$$

$$\mu_c = \frac{1}{m_c} \sum_i r_{ic} x^{(i)} \quad \text{Weighted mean of assigned data}$$

$$\Sigma_c = \frac{1}{m_c} \sum_i r_{ic} (x^{(i)} - \mu_c)^T (x^{(i)} - \mu_c) \quad \text{Weighted covariance of assigned data (use new weighted means here)}$$
ANEMIA PATIENTS AND CONTROLS

Red Blood Cell Volume

Red Blood Cell Hemoglobin Concentration

From P. Smyth
ICML 2001
From P. Smyth
ICML 2001
EM ITERATION 5

From P. Smyth
ICML 2001
EM ITERATION 10

From P. Smyth
ICML 2001
EM ITERATION 15

From P. Smyth
ICML 2001
EM and missing data

• EM is a general framework for partially observed data
 • “Complete data” \(x_i, z_i \) – features and assignments
 • Assignments \(z_i \) are missing (unobserved)

• EM corresponds to
 • Computing the distribution over all \(z_i \) given the parameters
 • Maximizing the “expected complete” log likelihood
 • GMMs = plug in “soft assignments”, but not always so easy

• Alternatives: Stochastic EM, Hard EM
 • Instead of expectations, just sample the \(z_i \) or choose best (often easier)
 • Called “imputing” the values of \(z \)
 • Hard EM: similar to EM, but less “smooth”, more local minima
 • Stochastic EM: similar to EM, but with extra randomness
 • Not obvious when it has converged