
Web Services

Alexander Nelson

November 8th, 2017

University of Arkansas - Department of Computer Science and Computer Engineering



Web Services

What is a web service?

Set of functions that can be accessed over HTTP protocols

Provide response through a serialized data protocol (e.g. XML,

JSON)

Why use Web Services?

• Allow transmission of data from or to a remote server

• Perform proprietary data transformations

• Transmit data between programs



Web Service Design

What is the information flow of a Webservice?



REST Webservices

REST – Representational State Transfer

Developed in tandem with HTTP 1.1 and formalized in 2000

Distill data transfer to a core set of principles



REST Architecture

Core Architectural Properties:

• Performance – Maximize network efficiency

• Scalability – Support large number of components and

interactions

• Simplicity and Uniformity in interfaces

• Visibility of communication between components

• Portability of program code and data

• Reliability of components to failures



REST Architecture

Six guiding constraints:

• Client-Server Architecture/Model

• Statelessness – No client context is stored on the server

between requests

• Cacheability – Clients can cache responses

• Layered System – Client doesn’t know if it is connected

directly to the end server

• Code on demand – Temporarily extend functionality of client

by transferring executable code

• Uniform Interface



REST Methods

REST Web services use the available HTTP methods

Most often, REST services use four common methods:

• GET

• PUT

• POST

• DELETE

Behavior depends on whether the URL specifies an element or a

collection



REST URLs

REST Services use URLs to specify data and method locations

Example:

http://example.com/api/path/?parameter=1&otherparameter=2

The URL will specify:

• HTTP (or HTTPS) as the transfer protocol

• The server domain location

• The path on the server to the particular function

• Optional set of parameters following a ? and separated by &s



Collection vs. Element

Element (or Resource) – Object with a type

May have:

• Associated Data

• Relationships to other resources

• Set of methods that operate on it

Collection – Set of elements



GET Method

If the URL points to a single element

Example:

GET http://del.icio.us/api/ahnelson/bookmarks/a211528

Returns information about a specific bookmark

If the URL points to a collection:

Example:

GET http://del.icio.us/api/ahnelson/bookmarks

Returns information about all the bookmarks associated with the

user ahnelson



POST Method

POST – Creates a new object

URL specifies the collection to which the object should be added

Specify fields using optional parameters

Often returns the URL of the created object



PUT Method

PUT – Can be used to create or update existing record*(s)

URL specifies the resource to be modified

Can prevent creation using PUT by returning a 404 error if

resource doesn’t exist

Specify fields to modify using optional parameters

Typically returns the URL of the modified object



DELETE Method

DELETE – Remove record(s)

URL specifies the element or the collection to be deleted

Often returns an HTTP response of 204 (No Content) if successful



Responses

The Responses include an HTTP Response code and optional

information in serialized language

Response Codes:

• 200 – OK

• 201 – Created

• 202 – Accepted

• 401 – Unauthorized

• 403 – Forbidden

• 404 – Not Found

And others



Example

Let’s look at an example using test data from the web:

https://jsonplaceholder.typicode.com/



Securing a REST Web Service

Authentication – Verify that a user of the service has permission

Authorization – Verify that the connection is allowed

Perform these actions in order to verify that the user is allowed to

use the service and has a valid connection



Authentication – Basic

Simplest form of authentication

Send encoded Username & Password Secret as additional HTTP

header

Encoded =/= Encrypted! Use SSL (HTTPS) when doing basic

authentication

Password Secret should not be the same as the actual password!

Use hashing of passwords at server to prevent holding onto

passwords



Authentication – Hashed

The server and the client should be the only ones that know the

actual password secret

Combine parts of the request with the secret, and perform a hash

function

The server will be able to perform the same hash and determine if

there is a match



Authentication – OAuth

OAuth – Token based security

An authentication provider determines if the user is authorized and

provides a token

The token is used in place of the password secret

Tokens expire after a certain amount of time, require user to

authenticate again



Authentication – OAuth

OAuth Authentication Pattern


